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List of Experiments:

1.

To determine the modulys of rigidity of the material of a wire by the method of
oscillations (Dynamic ethod),

To determine the wavelength

! of a monochromatic light by a spectrometer using a plane
diffraction grating. Hence 10 ¢

alculate the dispersive power of the grating.

To determine the radius of curvature of a plano-convex lens by Newton’s rings.

To determine the refra

clive index of a liquid by pin method using plane mirror & convex
lens.

To determine the value of acceleration due to gravity (g) by means of a Compound
pendulum,

To determine the specific heat of a liquid by the method of cooling,

To determine the value of the mechanical equivalent of heat () by electrical method.

To determine the thermal ¢

onductivity of a bad conductor by Lee’s and Charlton’s
method.

To determine the Spring constant and effective mass of a given spiral spring.

Reference Books:

L. Practical Physics by Dr, Giasuddin Ahmed and Md, Shahabuddin
2. Physics-1 & IL gy R. Resnick, D. Halliday
3. Practical Physics by RK Shukla, Anchal Srivastava
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Experiment no 1:

— my e P “rieidi f @ wi
Name of the Experiment: Determination of the modulus of rigidity of the material of a wire
by the method of oscillutions (Dynamic Method).

Theory:
. A cylindrical body is supported by a vertical wire of length / and radius » as shown in
Fig. I.1. The axis of the wire passes through its center of gravity. If the body is twisted
through an angle and released, it will exccute torsional oscillations about a vertical axis.
Therefore, the motion is simple harmonic. If at any instant the angle of twist is ¢, the moment
of the torsional couple exerted by the wire will be
nrr’
2/

0=C0,

v
mr . .
where C = ’72! is a constant and 5 is the modulus of
rigidity of the material of the wire,
Therefore, the time period for torsional oscillations is,

C.

where [ is the moment of inertia of the cylindrical body

which is given by ¢ =%Mu’. here M and a are the mass and

radius of the cylinder respectively.
From above two equations, we get
'l _ Sull

4
o W Fig. 1.1: Torsional pendulum

7 =

or, n= if—:,’ dynes/cm’

Apparatus:
A uniform wire, A cylindrical bar, Suitable clamp, Stopwatch, Screw gauge, Slide

calipers, Meter scale, elc.

Brief Procedure:

1. Find out the value of one smallest division of the main scale and the total number of
divisions of the vernier scale of the slide calipers and calculate vernier constant (V.C).

2. Find out the valuc of one smallest division of the linear scale, value of pitch (the

distance along the lincar scale traveled by circular scale when it completes one

rotation) and the total number of divisions of the circular scale of the screw gauge and

calculate least count (L.C).

Measure the radius, a of the cylinder by using the slide calipers.

Measure the mass. M of the cylinder. Calculate moment of inertia.

Measure the radius, ¥ of the wire by using the screw gauge.

Measure the length, / of the wire between the point of suspension and the point at

which the wire is attached to the cylinder with a meter scale,

7. Twist the cylinder from its equilibrium position through a small angle and release so
that it begins to oscillate. Measure the time for 30 complete oscillations with a stop
watch. Find out the time period of oscillation.

2
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8. Calculate the value of the modulus of rigidity (7) of the material of the given

Experimental Data;
Vernier Constant (V.C.) of the slide calipers,

The value of one smallest division of the main scale
" Total number of divisions in the vernier scale

K.,

Least Cou‘nt (L.C.) of the Screw Gauge

LC Pitch
" Totalmumber of divisions in the circular scale

Table-1: Table for the radius of the cylinder

Mo, | i sesi Vernier | Vemier | Vemier scale - Mean Instru- [ Corrected Radus, .
i am_s e e' scale constant, reading, Janeler diameter, | mental | diameter, i
of reading, x i = X+y a
bs tem) division, Ve y=V.xd b D error D
oL i d (cm) (cm) o (cm) (cm) (cm) (cm)
1
2
3
4
5
Table-2: Table for the radius of the wire
: : : < Radius,
No. Linear Circular Least Cll’CUla..l' scale Blieese, _Mcan Instru Corcecied )
scale scale count, reading, diameter, mental i _D
of : M B xty diameter, r=—
b reading, x | division, L3 y=dxL, (em) D error D (cm) 2
(cm) d (cm) * (cm) (cm) (em) (cm)
1
2
3
4
5
Table-3: Table for the time period
No. of obs. Time for 30 oscillations, ¢ (sec) Time period, T=% (sec) Mean T (sec)
[ 1
I 2
[ 3
[ a
[ s
Length of the wire, : (i) cem  (ii) cm (iii) cm

Average Iéngth of the wire, / = cm

Calculations:

Moment of Inertia of the cylinder, f =1Ma‘ g-cm?
2
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Modulus of rigidity ol the wire, 7 = Ll d:,'ncs.lcm2

T2
Error Caleulation:

Standard value of the modulus of rigidity of the material of the wire (steel) =

8.4 x 10" dynes em™,

standard value ~ Experimental value
et i % 100 %
Standard value

Percentage error =

Result:

it
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Experiment no 2:

Nome of the Experiment: Determination of the wavelength of a monochromatic light by a

Spectrometer using a plane diffraction grating and calculation of the dispersive power of the
grating,

Theory:

Diffraction grating is an array of a large number of parallel slits, all Witl] thf’- same
width and spaced equal distances between the centers. When a monoclyomatlc light of
wavelength 1 sent from collimator falls normally on a diffraction grating placed on a

Spectrometer table (Fig. 2.1), a series of diffracted images will be seen on both sides of the
direct image.

If @ be the deviation of light for n* order image and (a+5) be the grating element then
from the equation of diffraction,
(a+b)sing =ni (1)

Thus, the wavelength of a monochromatic light is

sing )
A=
nN

1 . . i ¥
where N = G IS the number of lines or rulings per cm of the grating surface also known

as grating constant,

Knowing the values of n, ¥ and 6, wavelength 2 of the monochromatic light can be found,

- | Colimatar

Scalel

Rotating
table

Scalcll

Position A Position B

M
Direct image

Fig. 2.1: Diffraction grating and spectrometer arrangement

Differentiating equation (2) with respect to A we have

dg _ nN
dA "~ cos@

This equation gives the angular dispersive power of the grating, i.e. it’s the capacity of the
grating to disperse different wavelengths.

-
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Apparatus:

Spectrometer, Plane diffraction grating, sodium lamp set, etc.

Brief Procedure:

I. Record the grating constant.
Determine the vernier constant (mentioned in Exp. 1) of the scale of spectrometer.

3. Mount the grating on the spectrometer table with the grating ruling parallel to the
collimator slit and plane of grating perpendicular to the collimator axis. Do not move

it throughout the experiment.

4. Focus the eyepiece on the cross-wires illuminated by the light from the slit by sliding

the eyepiece lens in and out until the cross-wires appear sharpest.

5. Tum the telescope to one side of central position (Say left side, A) until an image of
first order diffraction appears on the cross-wires and then record the readings from

both scales I & II.

6. Similarly find the image of first order diffraction on the other side (e.g. right side, B)

of central position and record the readings as before.

7. Calculate the differences (4~8) between scale | and scale I readings and determine

the angle of diffraction.

8. Calculate the wavelength of the monochromatic light and dispersive power of the

diffraction grating using the given equations.

Experimental data:

Grating constant, N =

lines _
inch

Vernier constant of the spectrometer,

V.C

__Thevalue of one smallest division of the main scale

lines

cm

Total number of divisions in the vernier scale

Table-1: Table for the angle of diffraction

Reading for the angle of diffraction, 0
= Left side Right side —
=| 8 « g
i > o ; = &
E| o2 | 2% |F e 2 8.8 El PNl
2 e X895 8o |8 =  5=|8%|32 - = |edl t|lZ
= Q vl & | =9| 87 O |3 o] & 2el 2 o M =| | @
-‘—)’-"u"":"‘u""L‘u"uur.bum:r:“‘"'uu"u & o
Ssle|e BY 5|l c @ . = = == IR = =T - = e g
3] 5 v z|low g .a|< o =MoF|E|o w2 alee| 2| S
o & L5l 5 o : a ° &
- U)..a_"ouc_ o -Eu;u _:u_‘UJ-E_ “V'EM” ) -~ oy —
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Calculation:

Wavelength of the monochromatic light,
_ sinf A

=—-= cm =
nN
Dispersive power of the grating
de nN -1

= cm
dx cos @

Error Calculation:

Standard value of the wavelength of sodium light is 5890 A.

Standard value ~ Experimental value
Percentage error =

x 100 %
Standard value

| Results:
Discussions:
.
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Experiment no 3:

7 . — )
Name of the Experiment: Determination of the radius of curvature of a plano-convex lens
by Newton's rings.

Theory:

The phenomenon of Newton's rings is an interference pattern caused by the reflection
anq transmission of light between a spherical surface and an adjacent flat surface which form
a air thin film. When viewed with monochromatic light as shown in Fig. 3.1a, it appears as a
series of concentric, alternating bright and dark rings as shown in Fig. 3.1b centered at the
point of contact between the two surfaces.

|

_.-E\R_-_,._-

i
\mear

- -
<

(a) (b)

Fig.3.1: (a) Experimental setup of Newton's rings. (b) Pattern of the rings

Now the diameters of the n™

D} =2(2n+ 1)AR  (Bright Rings)

D’ = 4R, (Dark Rings)
where R is the radius of curvature of the lens and 2 is the wavelength of the monochromatic
light.

bright or dark rings are

th

Similarly, the diameters of the (n+p) " bright or dark rings are

Dyt =2[2(n+ p) + 1]JAR  (Bright Rings)
D,.,” =4 +p)AR (Dark Rings)
Subtracting D, from D, .,,2, we have
D,/ - D, = 4pAR, for either bright or dark rings,

DY, -D}
4pl
The above equation is employed to compute the radius of curvature R of a lens.

or, R

Apparatus:
Travelling microscope, Plano-convex lens, Sodium lamp set, etc.

Brief Procedure:

1. Determine the least count (mentioned in Exp. 1) of the micrometer screw of the

travelling microscope.
2. Set the intersecting point of the cross-wires of the eye piece at the middle of the

central dark spot.

8
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3. Slide the cross-wires to 12% dark ring on the left side of the central dark spot.

4. Set the vertical line of the cross-wire tangentially to 10" dark ring and note the
readings of the linear scale and circular divisions. ) e

S Set the cross-wire in the same manner to the 9", 8"..........., Ist rings by sliding the
microscope in the same direction, .

6. Cross the central dark spot by sliding the cross-wires and note the scale readings by
setting the cross-wire o the right side of the |* ring. o

7. Now move the cross-wires in the same direction and record the scaIe_readmgs in the
same manner for successive dark rings up to the 10" ring on the right side.

8. Draw a best fit straight line through origin on a graph paper with square of the
diameter as ordinate and number of the ring as abscissa. Calculate the slope of the
line.

9. Caleulate the radius of curvature of the plano-convex lens by using the given
equation,

Experimental Data:

Least Count (L.C.) of the micrometer scale
_ Pitch
" Total number of divisions in the circular scale
Table: Table for the diameter of the rings

Readings of the microscope
e
Left Side (L) Right Side (R) & B .

= o . o [ b L) O e o

L =1 o = & o] N b
ge = % | E=x|B gy |p [gx g S"-Ecz,_i‘ ¥ EL |2
M F I B R IR i E P PN I O

.2 o g = — ] .e i

859 32| 25|33 858|558 22 |28|5538 25 B

c @ oz o 3 U‘-‘L ] c 3 o .= ‘“-JUEL. o

= 8 25 Y P [ = 12 E£D (8 = =

= (8] = O A O O
1
2
3
4
6
7
8
9
10

9
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t Square of the diameter vs ring numbcﬁ

E
&
L
&
3

o
wy

3]

°

E
B
(@]

n n+p =
Ring number
Graph |

Calculation:
—_—

O
From graph 1, slope= —2* — 7n

(n+p)-n
R= Slope
44
Discussions:
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Experiment no 4:

s s red 1 d
Name of the Experiment: Determination of the refractive index of a liquid by pin metho
using plane mirror and convex lens.
Theory:

A plano-concave liquid lens can be formed by the combination of a convex lens, a
few drops of liquid and a plane mirror. If F be the focal length of combined lenses
(convergent lens), then we have the relation

| P

FT +f_1’ ...... m .
where f; and f; are the focal lengths of the convex lens and the liquid lens, respectively.
Correcting for the sign of f; which is negative, we get

1
F
" -
LoTF
o, f,:FF_—'r ......... @)

The focal length of the plano-concave liquid lens is also given by relation
] I 1
===
f, rr

where r{ r are the radii lower and upper surfaces of liquid lens respectively and g is the
refractive index of the liquid. Being a plane r=w

1 1

—=(u=1)=-

3 (w )r
; According to sign convention, both r and f; are negative. Thus,
|
| r
‘ =l+—... ... ... 3

M L )

The value of u can be found by using relations (2) and (3).

Since, the upper surface of this liquid lens has the same radius of curvature of the
convex lens it can be determined by using a spherometer.

Apparatus:
Convex lens, Plane mirror, Pin/pointer, Spherometer, Slide calipers, Stand & Clamp,
Experimental liquid, etc.

Brief Procedure;

1. Calculate the least count (mentioned in Exp. 1) of the spherometer. :
2. Place the spherometer on the plane mirror and slowly turn the screw so that the tips of
the central leg and the other three legs just touch the surface of the mirror. Note the
readings of the main scale and circular divisions of the spherometer. :
3. Now put a convex lens on the mirror and place the spherometer on the surface of the
“lens. Note the readings in the same manner of step 2. Then take the difference of 4
and B to calculate the height (k) of the central leg with respect to the tips of outer legs.

4. Slightly press the spherometer upon a piece of paper so that the three legs leave three
dots on the paper. Measure the distances (a1. a3, a;) between these dots by a scale and
calculate the mean distance, a.

11
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Calculate the radius of curvature of the lens by using the relation, » = 63/;+ =

Calculate the vernijer constant of the slide calipers.
Measure the thickness of the lens by using
Place a mirror on

slide calipers.
the base/table with its reflecting face upwards and put the lens on

the mirror. Clamp a pin horizontally on a vertical stand.
9. Find the position of the pin by moving it up or down so that there is no parallax

between the image of the tip of the pin and the tip of the pin itself,
10. Measure the distance between the pin and face of the lens at its middle by a meter

scale. g
I'. Calculate the focal length of the convex lens.

12. Pour few drops of liquid between the convex lens and the plane mirror.

h
2

13. Repeat steps 9 and 10 and obtain the focal length of the combination of the lenses.
14. Calculate the focal length of the liquid lens.
15. Using the given formula, calculate the refractive index.

Experimental Data:

Vernier constant (V. C.) of the slide calipers

_The value of one smallest division of the main scale

V.C

Least Count (L.C.) of the spherometer

Pitch

Total number of divisions in the vernier scale

LC

Table-1: Table for the measurement of /s

" Total number of divisions in the circular scale

. No. | Linear scale Circular [ Least count, Circular scale Total, - o
Reding of reading, x scale &y reading, y=L xd | x+y rzi::;l ! (cf]) !
an obs. (cm) Division, d (cm) (cm) (cm)
|
Plane 2
mirror, | 3 |
A [ 4]
[ 5 ]
[ 1]
Lens | 2 |
surface, | 3 |
B | 4 |
[ s |

Measurement of ‘a’ i.c, the average distance among the legs of the spherometer:

a, +a,+a, _

Mean value of @ = 3 cm
. 2
Radius of curvature of the spherical surface, r = g—h + IE‘ = cm

T T
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Table-2: Table for the thickness of the lens

ntal | Corrected
N Linear | Vemier | Vemier | Vernier scale Thickness, tthi]a:ss ]ns?r;z: thickness,
0‘;‘ scale scale constant, reading, p=xty 1c p g r (—(te)
reading, x | division, Ve y=AxL cm cm)
obs. (cm) Ji (cm) (cm) feml fem) oy (
1
2
|3
4
§
Table -3: Table for the focal lengths
Distance Focal length of Distance Focal lcng"h of FOCCl-] le'ng!h of
N between the pin the conve: lens, | M between the e . Mean | the liquid lens,
0?' and the face of g : ;an pin and the combination, F ¢ Ff,
the lens {without | f, =h +3 '+ | face of the lens _ 1 =P
] L3 em) | the Feh;+3 | (em 1
(cm) (cm) liquid), A, (cm) ) (cm)
1
2
3
4
Calculation:
r
H=1+—
f;
Error Calculation:
Standard value of the refractive index of water is 1.33
Standard value ~ Experimental value
Percentage error = X 100 %
Standard value
Result:

13
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Experiment no §:

Name of the Experiment: Determination of the value of the acceleration due to gravity (g) by
means of a compound pendulum.

Theory:

. A compound pendulum is a rigid body of arbitrary shape which is capable of
n_:)sc§llal|ng about a horizontal axis passing through it. For small angles of swinging, its motion
is simple harmonic with a period given by

T=2r L2
Vmgh

where / is the pendulum’s rotational inertia about the pivot, m is the pendulum’s mass, and h
is the distance between the pivot and the pendulum’s centre of gravity as shown in Fig. 5.1.

Fig. 5.1: Compound Pendulum

A compound pendulum that oscillates from a suspension point (§) with period T (as
shown in Fig. 5.1) can be compared with a simple pendulum of length L with the same period
7. L is called the equivalent length of the compound pendulum. The point along the
compound pendulum at a distance L from the suspension point is called the oscillation point
(Fig.5.1).Ina compound pendulum these two points are interchangeable.

Now using the time period expression of a simple pendulum,

T=23rJE
g
or.g=4fr’%

The acceleration due to gravity (g) at the place of the experiment can be measured by finding
L and T graphically.

Apparatus:
A bar pendulum, Stop watch, Meter Scale, etc

14
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Brief Procedure:

l. Label the ends of the compound pendulum bar as 4 and B.
2. Locate the centre of gravity (G) of the bar.
. 3. Measure the distance of holes (1,2, 3,... and 9) from G for both sides.
4. Insert a metal wedge in the 1" hole at end 4 and place the wedge on the clamp so that
the bar can oscillate freely.
’ 5. Oscillate the bar horizontally, Be careful not to make the amplitude of oscillation too

large. (Should be Jess than 5°). Note the time for 20 complete oscillations. Calculate
the time period. '

Do this process at different holes (2,3, .....and 9).
Repeat steps 3, 4 and § forend B,

N o

such a way that it intersects at four points of the two curves as shown in Graph 1.
Label these points as P, 0 Rands, respectively.

9. Find out the equivalent length of the pendulum, £ and time period, T from the graph.
10. Calculate the value of acceleration due to gravity using the given equation.

Experimental Data:

Table-1: Table for the time period for end-4

. Time period
Hole Distance of the hole Time for 20 oscillations, Mean time, ¢ t
from center of

no.

. (sec.) (sec.) T
gravity (em.) . sec.

/

e
/

/

T

Table-2: Table for the time period for end-B

[
: Time period
Dls‘tance of the hole Time for 20 oscillations, Mean time, ¢ t
from center of T=—
. (sec.) (sec.) 20
gravity (cm.) st
e | —_

15
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End- A

Time period, T (sec)

\P Q

Time period vs distance curves

End- B

R S

S e

4

0

Distance of holes from center of gravity (cm)

Graph I
Calculations:
From graph 1: Length, PR = cm and length, 0S=  cm
Equiv;ilent length to the Simple Pendulum, L = fi;—g—é‘-
Time period, T = sec
The value of acceleration due to gravity, g =4r’ ?L;= cm/s?

Error Calculation:

Standard value of the acceleration due to gravity = 981 cm/s?

Standard value ~ Experimental value

x 100 %

Percentage error =

Result:

Discussions:

16
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Experiment no 6:

Name of the Experiment: Determination of the specific heat of a liquid by the method of
cooling

Theory:

Newton’s law of cooling can be used to determine the specific heat of a liquid by
ohscrving the time taken by the liquid in cooling from one temperature to another.

Suppose a liquid of mass M and specific heat S is enclosed within a calorimeter of
Mmass m and specific heat 5. The thermal capacity of the system is (M;S;+ms). If the
temperature of the liquid falls from 0510 Gy in f;, then the average rate of loss of heat is

(01 - 6;)
b
If now the first liquid be replaced by an equal volume of second liquid of known

specific heat (say water) under similar conditions and if the time taken by the second liquid to

cool through the same range of temperature from i 1o 8, be 1,, then the average ralte of loss
of heat is

(M, S, + ms)

(M, S, + ms) Lf““,
2

where M; and S; are the mass and specific heat of the second liquid, respectively.

Since the conditions are similar, these two rates are equal

0,—80 )
(M, Sy + ms) E“t—’) = (M;$; + ms) (;t—z—).
1 2
or,
s = M5yt + ms(e, - t;)
=
Mt,

Apparatus:

Double walled enclosure, Calorimeter, Thermometer, Heater, Stop walch, etc.
Brief Procedure:
2ri€el Yrocedure:

1. Clean and dry the calorimeter and measure the mass (m) of the calorimeter and stirrer
" using a balance,

2. Pour water up to two-third volume of the calorimeter. Measure the total mass (m") of
the calorimeter, water and stirrer. Calculate the mass (M) of water.

3. Put the calorimeter on the heater and hold the thermometer bulb in the middle of the
water and raise the temperature around 62 °C. Keep the calorimeter into the double
walled enclosure with the help of a tongs. Close the lid and fix the thermometer with
holder so that its bulb is in the middle of the water.

4. Start the stop watch when the temperature just falls to 60 °C. Note this temperature in
the table. Go on recording the temperature of water up 1o 20-25 minutes at an interval
of every one minute, Gently stir the water during the whole process.

5. Pour out the water from the calorimeter and wipe it dry. Take experimental liquid in
the calorimeter as the same volume of water. Repeat steps 2, 3 and 4 for liquid.

6. On a graph paper, plot curves (both for water and liquid) by taking temperature as
ordinate and time as abscissa (see Graph 1). Calculate ¢, and t; from the graph.

7. Using the given formula, determine the specific heat of the given liquid.

17
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ExQerimental data:

Table: Time-temperatyre record for water and liquid

No. of obs Temperature of water Temperature of liquid
' (°0) (“C)

! 00 | ]

2 TR [ ]
i 0 ] |
4 03 l
3 |01 [
6 | 05| I
7 |06 ] I
8 07 |
9 |05 ] |
10 09 [
!

‘1 —

% 25 l ]

Mass of the calorimeter + stirrer, m =

Mass of the calorimeter + stirrer + liquid, m’ =
Mass of the liquid, M,
Mass of the calorimeter + stirrer + water, m” =
Mass of the water, My =m”—m =

=m’-m=

02 93 02 02 oo

Specific heat of the water, S, = 1.00 Cal i

Specific heat of the material of the calorimeter (Aluminum), s = 0.2096 Cal g . I|
(Copper), s = 0.0909 Cal g °C

)
E_/ﬁl
Q
[ =3
2
@
£
L)
E
@
e &

Temperature vs time

™

w
o TP ke

Water
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Calculations:

Time taken by water to cool from 6= °Ctof,= °Cas obtained from

the graph |, 1, = min

Time taken by the liquid to cool from 8, = °C to 62=  °C as obtained from
the graph 1, ¢, = min

Specific heat of the liquid,

My5,t, +ms(t, — t2)
8 =

Mit,

Error Calculation:

Standard value of the specific heat of turpentine is 0.42 Cal glect

Standard value ~ Experimental value
Percentage error =
Standard value

X 100 %
Result:

Discussions:

19
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Experiment no 7:

Na =T o
me af_rhe Experiment: Determination of the value of the mechanical equivalent of heat (/)
by electrical method.

Theorv:

The mechanical equivalent of heat J is the amount of electrical energy required to
generate one calorie of heat. If £ volt be the potential difference across a conducting coil
(Fig. 7.1) and i ampere be the current flowing through the coil for ¢ seconds, then the
electrical energy in the coil is Eir. If this energy is converted into heat / (calories) then the
mechanical equivalent of heat J is

7 =% Joules/Calorie (1)

If H is measured by means of a calorimeter with its contents where the temperature

raises from & C to &, C then
H = (Ms + W)(8; - 6;), @

where M is the mass of the water in the calorimeter, s is the specific heat of water and I is
the water equivalent of the calorimeter and stirrer. J¥ can be calculated from the mass and
specific heat of the calorimeter and stirrer.

From equations (1) and (2), we get

Eit

J (Ms +W)(8, — 8,) Joules/Calories
+ -
.
Power Supply
Ep—
R o=
+ _
Yy
(oS,
AN FAN

Fig. 7.1: Experimental sctup for measuring the mechanical equivalent of heat

Apparatus:
Joule’s calorimeter set, Ammeter, Voltmeter, Stop-watch, Thermometer, Balance,
Power Supply, Rheostat, Key, etc. ‘ ’

Brief Procedure:

1. Measure the mass (m,) of the calorimeter and stirrer using a balance.
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2. Pour water into the calorimeter which js just sufficient to dip the heating coil and the
bulb of the thermometer. Then measure the total mass (m3) of the calorimeter, stirrer
and water. Calculate the mass (M) of water.,

the water but never touching the coil and the calorimeter,

4. Complete the circujt as shown in Fig. 7.1. Switch on the circuit temporarily and adjust
the control knob of the power supply until the current is about 2 amperes. Then switch
off the circuit and stir the water unt] a stcady temperature is shown by the
thermometer. Record this temperature as initjal temperature,

5. Switch on the eircuit and start the stop watch simultaneously. Then start recording the
lemperature, current and voltage in the table at an interval of every | minute. Keeping
the current supply and stop watch on, record these values for 10 minutes. Then switch
off the circuit but allow the stop watch 10 run on and record the temperature for
further 10 minutes i the same manner, Stir the water gently during the whole process.

6. Find the maximum and final temperatures, Use them to calculate the radiation
correction.

7. Calculate the water equivalent of the calorimeter,

8. Using the given formula, determine the value of the mechanical equivalent of heat,

Experimental data:

Mass of the calorimeter + stirrer, m; =

Mass of the calorimeter + stirrer + water, m; =
Mass of the waler, M =m; —m, =

Specific heat of the water, s = | Cal g'! oc"!

Specific heat of the material of the calorimeter (Aluminum), s, = 0.209¢ Calg" °C"
(Copper), s, = 0.0909 Cal g" °C"!

B
g
g

Table 1: Table for current, voltage and temperature

No of Times Current, i Voltage, £ Temperature, T
observations (min) gaJnE.! (Volt) (°C)

CurrcnlSioEged

NEnn
o e e 1
R siEiEE
OO/OOOOQ
olo|c|e|lolo|jo [
/

21 20
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Calculations:
\
Water e

aler equivalent of the calorimeter, W=ms =
Initia] t

€mperature of the calorimeter + contents, £, = °C
Maximum lemperature of ¢

he calorimeter + contents, &, = °C
Final temperatyre of the calorimeter + contents, g = °C
Rise of temperature, g = (60— 8) °C
Radiation correction, £ = (G - Gl 2= °C
Corrected rise of temperature (& —8)=(6+ &)= °C
Time during which the current is passed, 1 = e
Mean current during the interval s, j = amp.
Mean voltage during the interval LE= volt

Mechanical equivalent of heat,
' = ___“__Eit Joules/Calories
j_(Ms+W)(Bz—6,) °

Error Calculation:

Standard value of the mechanical equivalent of heat, /is 4.2 Joules/Calories

Standard value ~ Experimental value
Percentage error =

% 100 %
Standard value

Result:

Discussions:
ZZIscussions:

22
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Experiment no 8:

.o rb
Name of the Experiment: Determination of the thermal conductivity of a bad conductor by
Lee's and Charlton’s method,

Theory:

Consider a thin layer of slab of a bad conductor, § (such as glass or ebonite). A and B
are the thick dises of brass or copper, one on cither side of S, # is a steam chamber from
which heat passes 10 S and A4 (Fig. 8.1). When
steamoas passed through B, A s warmed up by the FL:{
heat conducted through S. After some tme, a
sieady state will be reached when the rate of flow
of beat through § equals the heat lost from A by
radiation and conduction,

I 6, and 6, be the temperatures of B and
4 In steady state, respectively, then the quantity
of Lieat conducted per second through the slab § - s
s

_ Ka(8,-0))

Q) = X4zh)

where X 1s the thermal conductivity of the slab §
and a and o are the area of cross-section and

thickness of §, respectively,

a0 . ;
lf; be the rate of cooling of dise A, the
heat lost (radiated) per second is

. de
Q;=ms o Fig. 8.1 : Lee's and Charlton’s apparatus
where 77 and 5 be the mass and specific heat of 4.

In the steady state, 0=0,.

Ka(8,-8;) = mg ﬂ

or,
d dt
m:ﬂd
or, =
a(6,~8,;)
Apparatus:

Lee’s and Charlton’s apparatus, Slide calipers, Screw gauge, Thermometers, elc.

Brief Procedure:

I Measure the diameter of the bad conductor slab by using slide calipers.

2. Measure the thickness of the bad conductor slab by using screw gauge.

3. Stant heating the boiler apart from the bad conductor slab.

4. Putthe slab between 4 and .

5. When the steam starts 1o come from the outlet, start taking data from both the
thermometers Ty and 75 after at an interval of every § minutes until they show steady
readings (0, and 0,). Steady readings mean that they remain constant for at least 3
consecutive intervals, i. e. for 15 minutes.

6. After reaching the steady temperature 0; in thermometer 73, remove B and then heat A
with the slab still on the top of it up to (6,+10) .

23
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.

8. Plota graph of temperature v
temperature (4)). Calculate tt
9. Determine the thermal condy

catani

Experimental Data:

Vernier Constant (V.C.) of the slide calipers

s, time from cooling data. Draw a tangent at steady
1€ slope of the tangent,
cuvity of the bad conductor using the given formula,

Ve = The value of one smallest division of the main scale

Total number of divisions in the vernier scale

Least Count (L.C.) of the Screw Gauge

Pitch

' Total number of divisions in the circular scale

Table-1: Table for the radius of the disc §

Remove i : .
temperatf With (h.e slab still on top of it from the heater and allow it 1o cool, Note the
nterval of every half minute until the temperature falls to (¢4-10)

s ; Vernier Instru- -
No. | Main scale v ickaier scale Diameter, ‘Mcan mental C_orrcctcd Radius,
i scale constant, A diameter, diameler, r=
of reading, x il rcading, D=x+y error
division, V. - D D-(te) D/2
obs. (cm) y=V.xg (cm) +e
L) (cm) Fated (cm) Fon) (cm) (cm)
1
2
3
4
Table-2: Table for the thickness of the disc §
Linear Circular | Least | Circularscale ; Mean Instrumental | Corrected
No. ) Thickness, b :
f scale scale count, reading, dmt thickness, error thickness,
ogs reading, x | division, L. y=pfxL; Y Y d e d~(te)
) (cm) B (cm) (cm) (cm) (cm) (cm)
[1 ] |
[ 2 | |
[3 ] |
4 ] I

Table-3: Time- temperature records of B and 4.

No. of
observation

Time (minutes)

Temperature, &, (°C)

Temperature, &, (°C)

0

5

10

2
J
4

'

15

ﬁ]:

&=
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Table-4; Time-temperature record of 4 during its cooling.

No. of obs. Time, ¢ (minutes) Temperature, (°C)
| 0 &)+10
2 05
— & ]
3 ]
4 .5
&= 10

Temperature vs time

0; (Steady Temperature)

Temperature (°C)

p R
Time (min) ek
Graph 1
Calculations:
Mass of the disc A, m = g

Specific heat of the material of A, 5 = 00909 Cal e
Radius of the specimendisc S, r = cm
Area of cross-section, a= 7 = cm?

i

From the graph 1, the slope of the tangent até,= °C,

a0 _ PQ S PQ
=z e =
dt PR — "PRx60

°C S-]
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Thermal conductivity,

df
mSmd

K=—"T
(6, = 6,)

Error Calculation:

The thermal conductivity of ebonite is 4.2x10 cal em™ s e,

Standard value ~ Experimental value
x 100 %
Standard value

Percentage error =

Result:

Discussions:

26

Scanned by CamScanner



Experiment no 9:

. ive mass of a
Name of the Experiment: Determination of the spring constant and effectiv
given spiral spring,

Theorv:

When a spiral spring clamped vertically at upper end 2 (Fig. 9.1) and SUbJEC‘e‘ljielg
applied load, m, at its lower end, then the extension ! becomes proportional to the app

force i.e.

F=k!
myg=kl
or, m
L - (),
where & is a constant of proportionality called spring constant.
—

¥

Ek\
=<
= .
—
=g dm

=

=

fe—
]\

0

Fig.9.1: Spring-mass system

The theoretical period of a system composed of a mass M oscillating at the end of a mass less
spring of force constant & is given by,

M

T=2n|—
T Ik

Since no spring is mass less, it would be more correct to use the equation

my+m
T=2n %,

where my is the load and m; is the mass of the spring.

For a spring of length L oscillating vertically (as shown in Fig. 9.1), the value of m, can be
derived from kinetic energy (E,) consideration as

k1
2
Ek =f =1 dm,
i 2
where v is the velocity of the infinitesimal mass dm.

Now, assuming homogeneous stretching and uniform mass distribution, dm = -T%fdy.
Let my and dm are moving with velocities vyand Vi respectively, where v<v,.
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Cors i
g e velocin as

-

© Iepesente

i', v can b " W lii‘l ar lun\'h.tn of the i
LAY

L
lh-_.-_:g,r ;:“"Ti‘quaf ofs, L’

A 3
£ = J_,;l{!’)"?dy—}ff

T

1

y ot the effective mass o [ the spring

where -

Apparatys:

A spural spring, 1 oad, Flecron

Biricet Procedure:
dure:

ud balarce, Stopwar

Witon y measuwred from a fixed pomnt

m, J‘l )"d):

ch and meter sc ale, etc

& ngd frame

Heospring Messuie the length of the Spring

al slong the vertical axis and record the time for

th load a5 abscissa and extension as

Ui slope of the line and calculate the Spring constant k

b Measure the mass M) of the gpring with a balance
2 Clamp the Mg vertically By g hook sfiached 1«
3 Measure the 1o ol the g wath 3 meter scale
4 A4S G0 BN boad (m ) W the froe ond of
With load Caliolate the extesinog of e spiing
3 Osaillate e sprang wath 100G gm
20 complete osatstians Then cak wlale the Lme penod
U Repeat steps 4 st 8 fow K w0 10 ety of lcads
7 Draw 3 best fit straight Line troggh ohgn wi
ordinate (Graph 1) Determune
8 Piot another graph with m. (sbicissa) agana ¥

out the effective mass (m ) by tahing the point o
anis.

Faporimental Data:

(ordinate) as shown in Graph 2, Find
{intercept of the resulting lines on m,

Table-1: Tavle for determimng extensions and time periods
| Mo r - : Length of the rl;t:-s'q;!h of the ts.‘_; Time foi 20 Mean | Time
P of | T Sprang without Spring with 2 LE huniisss Time, | Penod, T"_
_; ot { = : foad L, foad L, 1] T - . t T=20 | (sech
| igm) g {cm) (cm) @~ (nf) (se0) (xcc)
B i i | S e TSRS Wb I Skl NI
L =l | . SO | P W, SRS
. T L SR S 1N M (NS R N
[ 3] —
1w SR I B e N N
b8 — e
. ...}
(6 | in e —— e ek ]
71 200 1 S I — —
e B RS S SO AU MU —
|y 1 w0 ] e .
1-_L°_j_.l‘{"?*_ st e e el e L
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a 1
]
Extension vs Load | Square of the time peniod v » Load
|
1 i ]. {
l 1 .
| = | 1 { g
1 :- i ‘,-' i | -
| ; v l ; | -
[ |
a1 ! |
i 3 | E— ———
L= it ||
" ) f oy l
. ]
./ '
| ) W - A - = ,_‘”J__,_,__u__.__._,_..g
{1 2d » 4
[ { load m,ig) ! i n 0 Load m, (g)
- — ) t e e i ey o ————r—
Graph- i Giraph-2
Calculatinns:
¥ ' w i = - 4 f
From graph-{, Slope = — 0 chg
Sonn . !
Spring constant, k = g — GB | » dynesom
i Mo
From graph-2, the effective mass of the spring, m' - [

Error Calculation
Standard value of the effective mass of the spring - B
3

Standard value ~ Experimental value

Percentage error = 00 G4
Standard value 100w

Results

- -

Duscussinns:
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